Grundlagen Strahlenschutz

Was ist Radioaktivität und ionisierende Strahlung?

- Eigenschaft instabiler Atomkerne (Radionuklide), sich spontan in andere Atomkerne umzuwandeln unter Aussendung ionisierender Strahlung:
 - Alphastrahlung (α) besteht aus Heliumkernen (2 Neutronen und 2 Protonen, Teilchenstrahlung)
 - Betastrahlung (β) besteht aus Elektronen oder Positronen (Teilchenstrahlung)
 - **Gammastrahlung (γ)** besteht aus Photonen (elektromagnetische **Wellenstrahlung**; vergleichbar mit Licht aber deutlich höhere Energie)
 - Neutronenstrahlung besteht aus Neutronen (neutrale Kernbausteine, Teilchenstrahlung)
- Ionisierende Strahlung transportiert Energie (= "Zerstörungskraft"), meist angegeben in Elektronenvolt [eV], durch Raum und Materie
- Ionisierende Strahlung kann Elektronen aus Atomen und Molekülen entfernen → Ionisation

Warum ist ionisierende Strahlung für uns schädlich?

- Ionisation kann Biomoleküle, z.B. das Erbgut, schädigen
- unvollständige Reparatur dieser Schäden kann zu Zelltod, (vererbbaren) Mutationen und Krebs führen
- hohe Strahlendosen resultieren in akuten Strahlenschäden (Hautrötung, Haarausfall, Blutarmut, etc.)

Welche Messgrößen für radioaktive Strahlung gibt es?

Aktivität in Becquerel [Bq]:

[kBq], [MBq], [GBq], [TBq] 1

- Maß für die Menge eines Radionuklids (radioaktiven Stoffs)
- Anzahl der Atomkerne, die pro Sekunde radioaktiv zerfallen
- Halbwertszeit (HWZ): Zeitspanne, in der sich die Aktivität (A) aufgrund des radioaktiven Zerfalls halbiert;
 Beispiele: 1 HWZ = 1/2 A; 2 HWZ = 1/4 A; 10 HWZ = 1/1024 A (ca. 1 %)
- Äquivalentdosis in Sievert [Sv]:

 $[\mu Sv]$, $[mSv]^1$

- Maß für die Strahlenbelastung; gemessen an festem Ort (Ortsdosis) oder an Person (Personendosis)
- vom Körper absorbierte Strahlungsenergie pro Kilogramm multipliziert mit einem Qualitätsfaktor zur Berücksichtigung der unterschiedlichen biologischen Wirksamkeit (Gefährlichkeit) der verschiedenen Strahlungsarten und Strahlungsenergien
- meist in **Millisievert¹** [**mSv**] oder Mikrosievert¹ [μSv] angegeben, da Sievert ein sehr großer Wert ist
- (Orts-)Dosisleistung in Sievert pro Zeit [Sv/s]:

 $[\mu Sv/h], [mSv/h], [mSv/a]^{1}$

- Maß für die Stärke ("Gefährlichkeit") eines **Strahlungsfeldes**
- vom Körper in diesem Strahlungsfeld (potentiell) aufgenommene Dosis pro Zeiteinheit
- abhängig von Aktivität, Strahlungsart, Strahlungsenergie, Abstand zur Quelle, Abschirmungen, etc.
- Zeit x Dosisleistung = Dosis

Was versteht man unter Körperdosis?

- Die Körperdosis berücksichtigt die **äußere** und **innere** (durch Inkorporation verursachte) **Strahlenexposition.**
- reine Rechengröße zur Festlegung von Grenzwerten für einzelne Organe (Organdosis) oder den Körper (effektive Dosis)
- Die Energiedosis in den Organen, Geweben oder K\u00f6rperteilen wird zur Ber\u00fccksichtigung der unterschiedlichen biologischen Wirksamkeit der verschiedenen Strahlungsarten sowie der unterschiedlichen Empfindlichkeit der Organe, Gewebe und K\u00f6rperteile mit Strahlungs- und Gewebewichtungsfaktoren multipliziert.
- Als Schätzwert für die Körperdosis durch äußere Strahlenexposition dient die messbare Äquivalentdosis.

Wie kann man die Strahlenbelastung reduzieren?

- Abschirmung der Strahlung
- Abstand zur Strahlungsquelle vergrößern (Abstandsquadratgesetz: Verdopplung des Abstandes → 1/4 der Dosis;
 Vervierfachung des Abstandes → 1/16 der Dosis; ...)
- Aufenthaltsdauer im Strahlungsfeld reduzieren
- Arbeitshygiene: Einweghandschuhe, -überschuhe, -Overall, Staubmaske (FFP3)
 - → Schutz vor Kontamination und Inkorporation, aber: kein Schutz vor äußerer Bestrahlung

Womit lässt sich radioaktive Strahlung abschirmen bzw. abschwächen?

- Alphastrahlung: z.B. mit Blatt Papier oder Kleidung; komplette Abschirmung möglich
- Betastrahlung: z.B. mit wenigen Millimetern Plexiglas oder Aluminium; komplette Abschirmung möglich
- Gamma- und Neutronenstrahlung: z.B. mit Blei (einige mm bis cm) oder Beton (einige cm bis m); nur Abschwächung möglich

Welche Reichweite hat radioaktive Strahlung in Luft?

- Alphastrahlung: sehr geringe Reichweite in Luft (wenige mm bis cm)
- Betastrahlung: geringe Reichweite in Luft (wenige cm bis m)
- Gamma- und Neutronenstrahlung: sehr große Reichweite in Luft (viele m bis km, wird aber immer schwächer)

1 Vorsätze für Maßeinheiten (Finheitenvorsätze, Finheitenpräfixe)

Kilo [k]	Tausend	1.000	1.000 Milli [m]		0,001
Mega [M]	Millionen	1.000.000	Mikro [μ]	Millionstel	0,000.001
Giga [G]	Milliarden	1.000.000.000	Nano [n]	Milliardstel	0,000.000.001

Stand: 10.10.2019 Seite 1

Welche Gefahr stellen die verschiedenen Strahlungsarten dar?

- Alphastrahlung: großes Schädigungspotential aufgrund hoher Wechselwirkung mit Materie (Energieabgabe auf sehr kleinem Raum); Schädigung nur bei Inkorporation, da geringe Eindringtiefe in die Haut; hohes Kontaminationsrisiko
- Betastrahlung: mittleres Schädigungspotential aufgrund mäßiger Wechselwirkung mit Materie (Energieabgabe auf größerem Raum, verglichen mit Alphastrahlung); Gefahr durch Inkorporation und durch äußere Bestrahlung
- Gamma- und Neutronenstrahlung: geringes Schädigungspotential aufgrund geringer Wechselwirkung mit Materie und dadurch geringe Energieabgabe (Ursache der schwierigen Abschirmbarkeit)

Was sind umschlossene radioaktive Strahler?

- von fester Hülle umgebene radioaktive Stoffe
- Strahlung, nicht aber der radioaktive Stoff, kann austreten und Strahlungsfeld bilden

Was versteht man unter einer Kontamination?

- Verunreinigung von Oberflächen, Wasser, Raumluft, etc. mit offenen (nicht umschlossenen) radioaktiven Stoffen
- i.d.R. kein messbares Strahlungsfeld; Gefahr durch Hautkontakt und Inkorporation (Verschlucken, Einatmen)
- Nachweis durch Kontaminationsmessungen; Auswechseln von Schutzkleidung (Rückkontamination vermeiden!); Hände waschen; ... <u>Hilfe der Strahlenschutzfachkräfte in Anspruch nehmen!</u>

Welche Strahlendosis (effektive Dosis) erhalten wir durchschnittlich pro Jahr?

Welche Dosisgrenzwerte (effektive Dosis) gelten für eine zusätzliche Strahlenbelastung?

- 1 mSv/Jahr für Einzelpersonen der Bevölkerung
- 20 mSv/Jahr für beruflich strahlenexponierte Personen
- **100 mSv** einmal pro Jahr zur Gefahrenabwehr
- 400 mSv Lebensarbeitsdosis über das gesamte Berufsleben
- 250 mSv einmalig zur Lebensrettung
- 15 mSv pro Einsatz zum Schutz von Sachwerten

Beispiele für Dosen und Dosisleistungen (Zirkawerte)

•					
einfacher Flug New York-Frankfurt	0,06 mSv	Röntgenaufnahme Bein	0,1 mSv	statistisch nachweisbare Erhöhung des Krebsrisikos (einmalig, kurzfristig)	100 mSv
3 Wochen Aufenthalt im 2000 m	0,05 mSv	Röntgenaufnahme Bauchraum	1,2 mSv	erste klinische Befunde der Strahlenkrankheit (einmalig, kurzfristig)	200 mSv
leben in La Paz Bolivien (4000 m), pro Jahr	2,5 mSv/a	Computertomographie Bauchraum	25 mSv	tödliche Strahlendosis (einmalig, kurzfristig)	7000 mSv
durchschnittliche Strahlen- belastung von Piloten pro Jahr	2,5 mSv/a			maximale Strahlenbelastung eines Kraftwerksmitarbeiters in Fukushima (Unfall)	680 mSv

Berechnungsbeispiele (Anmerkung: Zur Abschätzung der effektiven Dosis kann die messbare Orts- oder Personendosis herangezogen werden)

<u>B</u>	p. 1 gesucht:	erhaltene effektive Dosis	Bsp. 2	gesucht:	maximale Aufenthaltsdauer im Strahlungsfeld
	gegeben:	 Ortsdosisleistung: 0,1 mSv/Stunde 		gegeben:	- Ortsdosisleistung: 0,1 mSv/Stunde
		- Aufenthaltsdauer: 2 Stunden			- max. zulässige effektive Dosis: 1,0 mSv
	Ergebnis:	0,1 mSv/Stunde x 2 Stunden = 0,2 mSv		Ergebnis:	1,0 mSv / 0,1 mSv/Stunde = 10 Stunden

Womit wird Strahlung gemessen?

- Kontaminationsmonitor:
 - zum Aufspüren von Kontaminationen
 - kann i.d.R. Alpha-, Beta- und Gammastrahlung messen
 - wird nahe an der zu messenden Oberfläche vorbeigeführt
- Dosis- und Dosisleistungsmessgerät:
 - zur Messung der Äquivalentdosis (Orts- oder Personendosis) und/oder Dosisleistung im Strahlungsfeld
 - meist Kombination aus Dosis- und Dosisleistungsmessgerät
 - einstellbare Warnschwelle: Alarm bei Erreichen einer bestimmten Dosis und/oder Dosisleistung
- Filmdosimeter/Ganzkörperdosimeter
 - zur Messung der Personendosis bei beruflich strahlenexponierten Personen (meist am Rumpf getragen)
 - beruht auf dem Prinzip, dass ein fotografisches Material durch die Strahlung geschwärzt wird
 - nicht direkt ablesbar (müssen ausgewertet werden)

Kenndaten einiger Radionuklide (Art der Strahlung, Halbwertszeit, Ursprung und Anwendung)

Abkürzungen: α,β,γ: Strahlungsarten; HWZ: Halbwertszeit; a: Jahre, d: Tage, h: Stunden; K: Kernkraftwerk, M: Medizin, N: Natur, T: Technik, W: Wissenschaft Kohlenstoff-14 (β; HWZ 5730a; N,W), Phosphor-32 (β; HWZ 14,3d; M,W), Schwefel-35 (β; HWZ 87,5d; W), Kalium-40 (β,γ; HWZ 1,3Mrd. a; N), Cobalt-60 (β,γ; HWZ 5,3a; M,T), Krypton-85 (β,γ; HWZ 10,9a; K,T), Strontium-90 (β; HWZ 28,8a; K,M,T), Yttrium-90 (β,γ; HWZ 64,1h; K,M,T), Iod-131 (β,γ; HWZ 8,0d; K,M), Caesium-137 (β; HWZ 30,2a; K,M,T), Radium-226 (α; HWZ 1602a; N,W), Americium-241 (α; HWZ 432a; K,T)